Topic 6D - The pH of Aqueous Solutions

How to calculate the pH of a solution of a weak acid:

Toolbox 6D.1 - p. 473

Calculating the pH and percentage deprotonation of a weak acid:

Example 6D.1 - p. 473

Calculating the Ka and pKa of a weak acid from the pH:

Example 6D.2 - p. 474

How to calculate the pH of a solution of a weak base:

Toolbox 6D.2 - p. 475

Calculating the pH and percentage deprotonation of a weak base:

Example 6D.3 - p. 476

1 of 3

TABLE 6D.1 Acidic Character and K_a Values of Common Cations in Water*			
Character	Examples	$K_{\rm a}$	pK_a
Acidic			
conjugate acids of weak bases	anilinium ion, C ₆ H ₅ NH ₃ ⁺	2.3×10^{-5}	4.64
	pyridinium ion, C ₅ H ₅ NH ⁺	5.6×10^{-6}	5.24
	ammonium ion, NH ₄ ⁺	5.6×10^{-10}	9.25
	methylammonium ion, $CH_3NH_3^+$	2.8×10^{-11}	10.56
small, highly charged metal	Fe^{3+} as $Fe(H_2O)_6^{3+}$	3.5×10^{-3}	2.46
cations	Cr^{3+} as $Cr(H_2O)_6^{3+}$	1.3×10^{-4}	3.89
	Al^{3+} as $Al(H_2O)_6^{3+}$	1.4×10^{-5}	4.85
	Cu^{2+} as $Cu(H_2O)_6^{2+}$	3.2×10^{-8}	7.49
	Ni^{2+} as $Ni(H_2O)_6^{2+}$	9.3×10^{-10}	9.03
	Fe^{2+} as $Fe(H_2O)_6^{2+}$	8×10^{-11}	10.1
Neutral			
Group 1 and 2 cations metal cations with charge +1	Li ⁺ , Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ Ag ⁺		
Basic	none		

^{*}As in Table 6C.1, the experimental pK_a values have more significant figures than shown here, and the K_a values have been calculated from these more precise data.

Table 6D.1

Atkins, Chemical Principles: The Quest for Insight, 7e

W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

TABLE 6D.2 Acidic and Basic Character of Common Anions in Water		
Character	Examples	
Acidic very few	$\mathrm{HSO_4}^-$, $\mathrm{H_2PO_4}^-$	
Neutral conjugate bases of strong acids	Cl ⁻ , Br ⁻ , I ⁻ , NO ₃ ⁻ , ClO ₄ ⁻	
Basic conjugate bases of weak acids	F ⁻ , O ²⁻ , OH ⁻ , S ²⁻ , HS ⁻ , CN ⁻ , CO ₃ ²⁻ , PO ₄ ³⁻ , NO ₂ ⁻ , CH ₃ CO ₂ ⁻ , other carboxylate ions	

Table 6D.2

Atkins, Chemical Principles: The Quest for Insight, 7e

W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Calculating the pH of a salt solution with an acidic cation:

2 of 3

Example 6D.4 - p. 479

Calculating the pH of a salt solution with a basic anion:

Example 6D.5 - p. 480

3 of 3